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A. Explicit form of variables defined in Section 3.2

In equation (18), K7 d € R°™ is the i-th row vector of KP°? corresponding to domain s and class 7, namely
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For Proposition 1, the averaged Gram matrix K can be denoted as

CN 1l LN pdm ]
nr 2uj=1 ki nr 2j ki
Ly gl s pim
e Z] 1 er]] Z knu
RIL 2”" By
Mom
o~ T nxm
K = LZ B2 1an p2m eR ;
n1 n2j N £=j=1"n2]
AN gl 1 Nie
n1 ijl klj o Z] 1 k
1 ni ml .. 1 nrn mm
Lny £=j=1"nmj Z k“m]
/ AN . . . . .
where k77 := k(x],x] ) is a simplified notation for the elements in Gram matrix K.

B. Proof of Proposition 1
B.1. Preliminary

For two different variables x; and :cj within the same domain, we have

*=B(|ef - x5|[3/h) = E(||T°(uf — u)[3/h)
(T B((uf —ud)(uf —ud)")T" /h)
=2tr(X*%)/h.
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While for different domains s and s’, we can similarly derive that

=E([@; — a3 [3/7)
= (=) + w(=) + llm* = n*'|13) /h.

)

Combining the results in (Yan & Zhang, 2022), we have the following second-order Taylor expansions under assumption 1,

F(llaf = asl13/h) = F(r°) + FO XS + ea.re (X55)(X3))%, (B.1)
Flg = a5 1B/0) = £ ) 4 FOEDXG + 6 n (XTGP (B.2)
where X7, = ||lxf — a3|[3/h — 7°, XZ.(’SJ-’S/) = ||xf — m}‘fl |13/h — 7(>), and ¢, - (-) is a bounded function only depends on

7 and function f by Lemma B.1.

Lemma B.1 (Lemma S1 of Yan & Zhang (2022)). Consider a function of the form h(z) = g((a + x)'/?) for a > 0 and
x > —a, where g is a real-valued function defined on [0, +0). Suppose

sup sup |¢\¥ (z)] < oc.
1<s<l+12>0

Then we can write h as

l
h($)(0)z*
=2 # +asna(@)a™, sup lega(@)] < C,

s=0 rz—a

Sor some constant C' > 0 and any x > —a. The subscripts of the function c¢(x) are used to indicate the dependency on 1 + 1
and a.

B.2. The proof

Proposition 1. Given Assumption 1, the mean and variance for the elements in K are

n @(res)y
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T
where O(-) denotes the order of high order non-linear terms and I'*" T'° := (0;)pr <. While for the covariances, if the
two elements are in the same row, we have

Ngr Ngrr

CO‘}(n,;k” ’nugk ) O(p*h™2), (B.5)

and if they are in the same column,

Cov(nlsikfﬂs’ Z’f )* (P*ng'h7?), (B.6)

Jj=1

otherwise their covariance equal 0.
Proof. To obtain the first two moments of K, we consider the following two cases:

. The element - Z j—1 k77 is within the same domain s.

gl
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2. The element - 7' 1 k3 is calculated between domain s and s’
Ngr Jj= 2]

Case 1:

Now for case 1, using the result in (B.1), we have

LS kg = 4 5O+ (e = D6 zx;j . 202 (R

Hét Jsﬁt
s f(l)(Ts) .- s S\T (.8 s 2(7’15 — 1)f(1)( ) s 1 2 1
:f(T)+h7m;($i_$j) (x] —x}) — I, (E)‘*‘*Z@r X +O(n75
Jj#i ]#1
1
=Ag + 4y +A2+O(;), B.7)
where
AO :f(Ts)7
2f(1) (TS) .- s S\T (.8 s f(l)(TS) .- s 5112 s 512 2(715 — 1)f(1)(7-5) s
Ar=- Tg@c —n) () ;{m =~ Il — B} - S (),
i i
~ 2
ng ECQ s : ) .
J#l
Now we will analyze the asymptotic distribution of A first. Let us further decompose A; as
zf(l)(TS) .- S\T (.8 s
A11=—h7ns : (xf —n°) (333_77)
Jj=1
j#i
and
f(l)(TS) .- s s||12 s s|12 2(1’L5 — 1)f(1)(TS) s
A=t le{m- =~ Il =B} - S (),
J#
Following similar calculations of Chen & Qin (2010), we can show that
E(An) =E(A12) =0, (B.8)
4(ng —1 )2 &2
var(Ar) :% (10 =), (B.9)
2
var(Aq2) n}j ( fO (7 ) (Var T i ) ‘5))
n 2 P
=L (50 2o+ B - 3103 | (B.10)
s j=1

where T*" T := (04j)p xp» and the last equality have used Lemma S2 in Yan & Zhang (2022). Note that var(Ai9) =
O(1) > var(Aq1) = O(n; 1), thus var(A;) ~ var(Ajs). Asymptotic normality can not hold here since A1 contains a
||z — m*||3 term which is not affected by the change of sample size n.
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The next goal is to derive the first two moments of As. To achieve this, let us first consider the variance:
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Using Jensen’s inequality, we have

ST

E{[(ule"STI‘Suf +uw T T — 2wl T T — 2tr(25))/h]4}

<
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for some constant C' > 0. By applying Lemma S4 and S5 of Yan & Zhang (2022), we know that

Hence

1 & e N
var (- 1c2,Ts<X;j><Xf,j>2)=o<p2/h4>. (B.11)

Jj=

Similarly, we can establish the order for F(As). First, using the connection between Taylor expansion, we know that

f(2) T3 s S X s
)2 = 2( )(Xi,j)2 + Cg,Ts(Xz‘,j)(XiJ)g'

core (X5 (X3
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Thus,

[Bles.re(X,)(X2,)) — 57 ()B((X2,)?)|

=[Benr (X2,)(X,)” - gf@m)( )]
<B([ea,es (X3,)(X2,) - %f@)(TS)(Xsd)Qb

The last piece of the variance is cov(Ay, Ay). Since E(A;) = 0, we have

COV(Al, AQ) = (A AQ)
(1) 1 S S S )2
:E{ ZX — 3 e (X2)(X2 ) )}
Ng j,:1
J?ﬁl G £

{f(l) Z f<1> ZZ Deane( .j)(X:j)z)}

J 3'#d

which means the covariance between A; and A is negligible for large sample size.

Combining (B.7) to (B.13), we conclude that for case 1,

E%i:kfjs) f(TS>+§f<2>< VE((X2;)%) + 0(p*2 /1)
vl k) = Gt (£0) (2= + B G)) - 310, | + 06 i

Case 2:

For case 2, we can similarly obtain that

1< /
- Zkff = Ao+ A1 + Az + Agg + Ay,

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)
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where

Ao =f(r==D),

(1) (7(s:")) 2 v ,
Ajyj=————-+ f T _ns )7
j:1
_f(l)(T(&s)) - s s[12 s s'112 f(l)(T(s7SI)) s s’
Bua = 3 (Il =l e =) = T e ()
9 F(1) (7(5,5") L ofW ey B
g =2 T =) = 2 S ),
h hns/ =
(5:5)y( 5 (5:5)\2
XZJ )(ij ) :
Meanwhile, we have
E(A1) =E(A12) = E(A13) =0, (B.17)
4 1 s,s’ 2 ss1s’
var(Auy) =45 (rO ) wzmr=), (B.18)
1 /s rean\? . & y , 1
var(Az) =7 (FO) | 20(2) + Y (Blui (0)) = 3oy, | +0(), (B.19)
k=1 s
A _i (1) (.-(s,8") 2 s _ o8 Tzs s _ o8 19) 1 B2
var 13)—h2 AT (0 =n® ) B (-0 ) + (n/), (B.20)
and
var(Az) <var (e i (X50)(X05)?)
1 T ST s s s S/T S/T S/ S’ 8/ ST ST S/ 8’
<7 E((u] T° T} — (%)) + E((u] T° T u) —w(2°)*) + E((2u] T° T ul)*)+
B(2w T (0 =0 )") + B(2uy T (0" = n))") }
1 2 ’ ’ ’
=i Otr*(2%)) + 0 (=) + O (B*B)) + O(((n* — 0™ ) "B (" — n*))?)+
o(((m* =)= (0" = "))}
=0(p*/h"), (B.21)
_ o @ (7Y g
E(Ay) =E (Czr<s ,)(X( ))(X( ))) %(X( ) +O0(p 3/2/h3) (B.22)
cov(Ay, Ag) <O(p?/(nyh?)). (B.23)

Thus, for case 2, by (B.16) to (B.23), we have shown that

1 Ngr » o (2) T(S’S) (5.5’
E(—2 ki) =)+ %(Xij )2+ 002 /n?), (B.24)
S le
1 < ss’ 1 s,s’ s2 v s/ s o
var(—> ki) = 35 (f(”(T(’ ))) (2tr (=) + 3 (B( —3)of, +4(n® —n )= (m* —n )) +O0@p*/n%).
¥ =1 k=1

(B.25)

Combining (B.14) and (B.15), as well as (B.24) and (B.25), we have proofed the results in (B.3) and (B.4).
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Covariance terms:

Consider the covariance terms, if they are in the same row, one can verify that

Z [ - nz ES) = cov(AS + A + A5 A + A+ AT, (B.26)
where
IS f“)(f’s')){nmf — |13 - (=)},
agy 2D e ey - ),

h

X(9 )8 ))(X(‘? s ))

and Aﬁ”, Afgu, ASS” are defined analogically. We then handle all the covariance terms as follows,

’ 1" ]_ ’ " T T
cov(AF, Af) =5 O () FO (e pvar (w1 D) )
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S,8 ss' 52 4 2
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SS/ SS” O SS/ S S S S S S S S S”
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= 20 0) (2n(27) + S (BuG)) - 8)0% | +0w?/),
j=1

—0(?/1?) (8.29)
’ 1" 2 ’ 2 ! 1"
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recall that ¢y -(-) is a bounded function such that there exists some C' > 0 satisfies ¢; -(-) < C, and by Assumption

12, 0(=*)) = 0(p), O(SP_, (E(w; ()" — 3)0%) = Op), O(E(l|z; — n*|B(x; — n*)" (n* — n*"))) = OWP),

O((m* —n*)T25(n* —n*")) = O(p?). By (B.26) to (B.32), we conclude that the covariance of two elements belong to
the same row is not affected by the sample size n, since

ngs Ngrr

1 s 1 12 ’ 1" ’ ’ 12
cov(— S ki ST k") =cov(AfS, AT) + 2e0v(A3, A3s) + 2c0v(A5, A5 + cov(ASY, AT )+

Ngr Nt
S 7:1 S ]:1

2c0v(A, AS) + cov(AST, AS)
=0(p*/h?)

Next, for two elements within the same column, we have

cov(rjs z;kf;, Zk = cov(ASF + AT+ ASS ASTE £ A+ AT,
iz
where
a0 E_j {iles - 713 - w(z) ),
AjF =-— Dh;i“) Z zs—n*) (n" —n°),

ALt = Zcz v (XEG )X O),

and A‘{ll/s, Afg“‘, A;”s are defined analogically. Mimic the previous calculation, we have

S/S SNS 1 SS/ SS S p
cov(Aff, Af*) = mﬂ%( SO D) | 257 + (B = 3)0j; | = O/ (hns)),
S j=1
cov(Aff, AL*) = hzn S O FONE (|2 -l 35— n') (" = %)) = 0%/ (hn.)).
’ 1" ’ p
cov(Af, A7) < 20O [ a2+ + Y =3)0}; | + 0/ (h*n.)) = 0"/ (h*n.)),
S j=1
S/S SNS 2 S S/ S SH S/ S S S//
cov(Afy, Afy°) = Wf(”(T( SNfOEEN @0 =) TE (0 — %) = 0%/ (hny)),
cov(Af5, A7) < f<1>< CD) =)' (0" =) + 00/ (WPn.)) = OGP/ (hn.)),

2

cov(A3*,A57) < hfﬁ (o) + Y (B () = 3)0%) + 4™ —n) TS (0" = %) + 0*/h?)) = O/ (h

]

which means cov (- Z i ka57 o 2;21 kfjf's) = O(n; ') for fixed h and p. To complete our discussion, if two elements

are not within the same row or column, we have their covariance equal 0. O

ns)),
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C. Proof of Theorem 1

C.1. Preliminary

To prove Theorem 1, we first present the classical generalization bound towards IID data. The empirical p-margin loss in
IID scenario given g and p > 0 is denoted as

Consider the set of scoring functions g € G, we define II(G) by
(G) ={z — g(&,y) :y € V,g € G},
and the Rademacher complexity

R, (I(G)) = E(z,y),a{ sup ; oig(%i, y)},

where o; € {—1, 1} are independent Rademacher random variables with equally probabilities.

The following theorem gives a generalization bound for multi-class classification.
Lemma C.1 (Theorem 9.2 of Mobhri et al. (2018)). Let G C R¥*Y be a set of scoring functions with ) = {1,...,¢}. Fix
p > 0, for any § > 0, with probability at least 1 — 6, the following multi-class classification generalization bound holds for
allg € G:
log 6!

2n

R(g) < Bnp(g) + %mnm(g)) +

Combining our kernel based distribution free domain generalization algorithm and a linear classifier, we can further upper
bound the Rademacher complexity R, (II(G)) as follows.

Lemma C.2 (Modified from Proposition 9.3 of Mohri et al. (2018)). Ler E:XxX—Rbea positive definite symmetric
kernel and let ¢y, : X — Hp, be a feature mapping associated to k. Assume that there exists v > 0 such that k(Z,Z) < r?
forall & € X. Then, for any n > 1, R,,(I1(G;,)) can be bounded as follows:

T2q2A2
n .

R (I(GR)) <

We note that by Assumption 2, k is a universal kernel (Blanchard et al., 2011), thus is also a positive definite symmetric
kernel (Sriperumbudur et al., 2011). The following Lemma gives the upper bound of k.

Lemma C.3. Assume Assumption 2 holds, the kernel k is bounded using Cauchy-Schwarz inequality on the equation

k('i"i) = <E(i'7 )7];:(5:’ )>’ say

1Bz, )l = [[8(u(Px), ) @ ku(z, )| < Ur||R(u(Px), )| < LaUrUe. (C.33)

Since all the conditions required by Lemma C.2 are satisfied. We finally give the generalization bound combining the results
in Lemmas C.1 and C.2.

Theorem C.1. Let E:XxX —Rbe a positive definite symmetric kernel and let ¢y, : X — ‘Hr be a feature mapping
associated to k. Assume that there exists v > 0 such that k(%,Z) < r? forall & € X. Fix p > 0, for any § > 0, with
probability at least 1 — 0, the following multi-class classification generalization bound holds for all g € Gy:

- 40q\/7ﬂ2A2 \/10g61
<R, — . C.34
Rlg) < Ruyla) + 2\ 25 42 (34

We note that (C.34) is only applicable if we treat (&, y) IID in training and test domains. However, (&, y) is not IID even
within a given class and domain, and we need a new generalization bound as stated in Theorem 1.
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C.2. The proof

To begin our proof, we first decompose R(g) — R, ,(g) into two parts.

R(g) — Ry ,(9) =R %ZZ%Z (& ,4))

1N &) s O
< %ZZ%Z [ PX‘Y T x5 J) — lp(rg(P)qy:jvmj,mJ)} ““

1 m c 1 n Als . . . ‘
(D) =33 =D [l (P o500 = ol (P o 5.000)|

s=1j=1 " i=1
1 m c 1 n A(S) (S) .
S = P LTS5, P&z ‘
_pcm;;ﬁ; "ol XY= @ji 1) = 7ol X|y=j%ji J)
Lyoyly (s) (5)
S om 7 Py @50d P ,S.,,-‘
_pcm;;n;{‘ o XY=g78 7) = X[y =575y P+

mas(g(PYy . @500) — max(o(PLy a5 v)| }

1\ &) s &) s
SpcimZZH{)g(PXIY_W jm]) (Px|y—37 jm])‘""_

mas(g(PYy ;. @00) — max(a(PEY o3|} (€35)

If maxy 2 (g(PC)y s @5,,y') — maxys; (9(PShy_n @5, 0)) > 0, Jet Ymar = argmax,; (9(PY)y_,25,,1"),
then

I;,li};(( (P)((‘Y 77 ?’,i’y/))_I;}i;((g(P)(a)y:jvm;,myl)) (P)(:‘)Y j,w;ivymam)_g(P)(;|)y:jvw§,i7ymaa:)~
Similarly, i max, 2 (9(PSy_j @50 y)) — maxys(o(PSy_p®5ay) < 00 let Ymar =

argmax,, ., (g(P)(fl)Yzj, x;;,y')), we have

I;/l?,é)](( (P)((S‘)Y—]a ;,ia y/)) - 2}23((9(13)(5))/:]7 x;ia Y )) (P)((s‘)y =3’ wj’,iv ymaw) - g(P)(;|)y:j7 x;ia ymaw)~

Hence,

max(g(Pyy > @50:0')) — max(9(Py . 25| < 9Py s Ymar) — 9Py 5 hmas)| - (C.36)



Supplementary Materials of “Distribution Free Domain Generalization”

Foragiveny € {1,...,c}, note that

(P(S)

(s) s
(P XY =4 j,ivy)

S
X|Y=5 x5 y) —

<|al W[ x [|¢5 (PS5 — (PS50l

<qA(ky (x5, @3 ;)2 |¢ﬁ(/¢p)((s‘>yzj) - W(Np)gﬁyzj il

<qAU,Lg| \#p}(;fyzj —Hpe) I
1 n
=gAU1 L~ > ry(x5,) — Hp I]. (C.37)
i=1 -

By applying the Hoeffding’s inequality in a Hilbert space, with probability 1 — 6,

1 & log 261
- S —ppe || <30 22— .
= ;:1 Dy (5 ;) po | < 302 - (C.38)

Combining (C.35) to (C.38), with the union bound over all domain and classes, with probability 1 — §, we have
6 log 2cmd—1
(I) < ~gAU U Ly | 22200 (C.39)
P n

Next, we will turn to control the second term (II). To achieve this, we first define the expected p-margin loss condition on

(s)
PX|Y:j

which gives the upper bound towards (I).

as

RGPSy _) = B, _pr  1(rg(#:,5) < 0),

X|Y=j

and further decompose (II) as
(I1) 1y S (s) (s) s 1 & (s)
=om 2= Z > {RUIPEy ) = 1o (PEy o i) } + — 33" {Rlg) — RUgIPC) )}
=(IIa) + (Ilb)

Now for (Ila), noticed that given P)((S ‘)Y: ; are IID generated within domain s and class j. While for (IIb), P)((S y=; are

IID generated since we have assumed nj = n Thus, we can apply Theorem C.1 to upper bound (Ila) and (IIb), as stated

below.

4CQAU1U2LR 1

11 —_— -+ —

(@) <= 1/Z

4 log 61
=—qAUIUs Ly [ = + 1/ 52 (C.40)
P 2cmin
4 logd—1

TI(b) <=qAU ULy | — + ) =2, (CAl)
P m 2cm

where k(&, &) is bounded via Lemma C.3.

Combining (C.39), (C.40) and (C.41), the multi-class generalization bound after considering the heterogeneity is

- 1 log 2cmoé—1! logé—1! log 61
R(g) <Rn.,(9) + quUlUQLﬁ(m/L oo 4= +4,/£) + \/ 8% _ 4 \/ 089 "
p i mn m 2cmn 2cm
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D. Experimental Configurations

The hyperparameters settings for the different methods are as follows:

¢ k-NN: the number of the nearest neighbours k € {1,2,3,4,5,6,7,8,9,10} were validated.

* SVM: the regularization coefficient C' € {0.1,0.5,1,2,5, 10,20, 50} and
the kernel bandwidth h € {0.1dy, 0.5dps, 1d s, 5dar, 10das, 50d s, 100d s }, where
dy = median (||x; — x;||3) ,Va;, ®; € X were validated.

* DICA: Two parameters (), §) require tuning. A € {1073,1072,107",1,10,10%,10®} and
§€{1073,1072,101,1,10,102,10%,10%,10%,10° } were validated.

* SCA: Two parameters (3, §) require tuning. 5 € {0.1,0.3,0.5,0.7,0.9} and
§ € {1073,1072,101,1,10,102,10%,10*, 10%, 10} were validated.

* CIDG: Four hyper-parameters (3, d, o, y) require tuning. 8 € {0.1,0.3,0.5,0.7,0.9},
§ € {1,10,10%,10%,10%,10°,10°}, o € {1073,1072,107*, 1,10, 102,10*} and
v € {1073,1072,10,1,10,102,10*} were validated.

* MDA: Three hyper-parameters (3, o, ) require tuning. 5 € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9},
o€ {1073,1072,1071,1,10,10%,10%,10*,105,10°}, and v € {1,10,10%,10%,10%, 10°,10%} were validated.

* DFDG: For 1-NN as classifier, only one hyper-parameter -y requires tuning.
~v € {0.01,0.1,0.5,1,2,3,5, 10, 20, 50, 100} were validated.
For SVM as classifier, two extra hyper-parameters were also considered, the kernel bandwidth h for transfer kernel and
regularization coefficient C'in SVM. C € {0.1,0.5, 1,2, 5,10, 20,50} and
h € {O.ld]\/[, 0.5d]\/[7 1dM, 5dM, 10d]\/[, 50d]u, IOOdM}, where dj; = median (sz — :1;]||§) ,VIL’i,x]‘ € X, were
validated.

For kernel-based DG methods (DICA, SCA, CIDG, MDA, DFDGQG), different number of extracted features ¢ was also
validated. For synthetic data, ¢ € {2,3,4,5} were tested. For real data, different number of extracted features ¢ (i.e.,
the number of leading eigenvectors) that contribute to certain proportions ({0.5, 0.8, 0.9, 0.95, 0.98}) of the sum of all
eigenvalues were validated.
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Figure S1. (a). Data X is organized by double indexing, where we first loop the domain index s and then the class index j. We use
X = [#]]and X = [(x},;)"] interchangeably, while the latter one is used to emphasize the class and domain of x;; (b). Both K?°* and
K79 has the same row order as what in X, while they differ only in the order of columns.
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Figure S2. Extracted features of synthetic data corresponding to the first two eigenvectors of different methods on Case 1. The numbers
in brackets show the accuracy of each method on the target domain. The top and bottom rows show the domains and classes of data
respectively. Only 50 of the 200 samples were displayed for each class of each domain.
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Table S1. The average rank (Rank) of different methods for all 16 missions on Office+Caltech and VLCS dataset and the results of
Nemenyi’s Paired Test, which is used to analyze whether the performances of the methods are statistically different, where the p-value
that smaller than 0.05 is highlighted.

DFDG-Eig SVM SCA DFDG-Eig DFDG-Cov DICA MDA CIDG

Rank — Methods SVM I-NN  I-NN NN I-NN NN 1NN NN
2.38 DFDG-Cov SVM 0.887 9.5¢-07 1.0e-05 6.3e-06 9.5¢-10 5.6e-10 1.3e-13 1.1e-13 <2e-16
294 DFDG-Eig SVM - 0.002 0.010 0.007 9.7¢-06 6.3e-06 1.1e-09 6.0e-13 <2e-16
4.25 SVM - 1.000 1.000 0.985 0.976 0.225 0.011 8.8e-14
4.69 SCA 1-NN - 1.000 0.881 0.846 0.077 0.002 9.1e-14
5.06 DFDG-Eig 1-NN - 0.916 0.887 0.099 0.003 9.5e-14
6 DFDG-Cov 1-NN - 1.000 0.897 0.251 1.3e-13
6 DICA 1-NN - 0.925 0.294 6.6e-14
6.75 MDA 1-NN - 0.990 1.3e-12
6.94 CIDG 1-NN - 2.3e-09
10 k-NN -
Table S2. Average accuracy and standard deviation on Office+Caltech dataset
Office+Caltech
Target A C A,C W,.D W,C D,C
k-NN 79.7£0.78 68.6+0.00 48.84£0.00 61.2£1.75 71.5+£0.00 70.6%0.66
SVM 92.24+0.09 82.840.42 68.7+0.09 80.5+0.19 84.9+0.42 84.440.08
DICA I-NN  91.840.77 83.2+2.26 61.7+7.10 80.24+0.78 84.9+2.32 85.44+2.38
SCA I-NN  92.24+0.78 82.3+1.76 65.0+2.73 81.24+0.00 85.2+1.12 83.84+2.17
MDA I-NN  90.3+1.21 75.1£1.30 56.7£2.92 75.940.40 80.9+2.16 78.5+1.68
CIDG I-NN  92.54+0.69 82.4+£0.44 68.6+£3.45 79.5+£0.90 82.0£2.59 83.4+0.42
DFDG-Eig SVM 92.340.39 83.2+0.49 723+141 81.2+1.77 83.840.65 85.0+0.83
DFDG-Eig 1-NN 91.940.48 82.6+0.40 66.2+1.24 82.7£0.55 82.3+0.48 84.9+0.13
DFDG-Cov  SVM  92.540.67 83.9+0.72 73.1+0.87 81.6+£0.88 83.8+0.88 84.94+1.06
DFDG-Cov  1I-NN 90.5£0.75 82.3+0.44 68.24+0.15 81.2+0.40 81.5+0.66 84.3+0.79
Table S3. Average accuracy and standard deviation on VLCS dataset
VLCS
Target \Y% L C S V,L V,C V.S L,C L,S C,S
k-NN 46.8+£0.20 49.54+0.67 72.9+£1.25 48.940.96 52.5+0.21 50.74+0.54 42.1+0.64 57.5£0.21 49.6+0.32 56.3£1.15
SVM 64.7+0.99 58.64+2.02 84.9+3.27 63.9£0.85 59.54+1.40 63.3+£0.80 53.64+0.38 66.8+1.20 64.94+1.31 70.3+0.79
DICA 1-NN 61.7£0.98 56.84+0.91 87.5+1.60 58.7£1.07 57.3+1.32 55.1£1.59 53.74+0.83 68.8£0.63 60.0+0.51 70.0£0.25
SCA 1-NN 65.34+0.37 58.0+0.97 89.44+2.21 60.7+0.39 58.4+1.31 56.8+1.37 54.8+£0.24 69.84+0.48 61.1+£0.73 70.94+0.24
MDA 1-NN 64.4+0.20 57.84+0.67 90.1+1.25 61.0£0.96 57.1+0.21 61.6£0.54 54.440.64 70.6£0.91 59.1+0.32 69.3£1.15
CIDG 1-NN 59.64+1.84 55.3+1.49 88.94+2.21 59.5+1.07 56.4+1.42 56.7+1.98 52.0+0.94 68.74+1.08 58.3+1.54 70.44+1.48
DFDG-Eig SVM 60.8+1.30 58.4+1.10 90.2+1.14 66.2£0.73 58.44+0.32 64.2£1.60 56.44+2.14 70.8+0.60 63.44+0.99 71.2+0.52
DFDG-Eig 1-NN 61.4+0.74 57.24+1.01 91.6+£1.70 64.540.26 57.0+0.78 63.84+0.57 51.2+1.28 68.84+0.60 63.7+0.45 68.9+0.84
DFDG-Cov SVM 64.6£0.69 59.54+0.90 91.4+1.12 65.04+0.42 57.6+0.61 63.44+0.89 56.5+1.57 70.2+£1.02 64.5+0.54 72.4£0.52
DFDG-Cov 1-NN 62.6+£0.66 56.0+0.97 93.0+0.95 62.94+1.02 56.1+£0.24 62.04+0.96 51.5+1.28 68.3+0.79 61.6+1.13 72.0£0.72
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