

A. Explicit form of variables defined in Section 3.2

In equation (18), $K_{i,j,s}^{pcd} \in \mathbb{R}^{cm}$ is the *i*-th row vector of K^{pcd} corresponding to domain *s* and class *j*, namely

$$\begin{split} \boldsymbol{K}_{i,j,s}^{pcd} &= \left(\frac{1}{n_1^1}\sum_{l=1}^{n_1^1}k(\boldsymbol{x}_{j,i}^s, \boldsymbol{x}_{1,l}^1), \dots, \frac{1}{n_c^1}\sum_{l=1}^{n_c^1}k(\boldsymbol{x}_{j,i}^s, \boldsymbol{x}_{c,l}^1), \frac{1}{n_1^2}\sum_{l=1}^{n_1^2}k(\boldsymbol{x}_{j,i}^s, \boldsymbol{x}_{1,l}^2), \dots, \frac{1}{n_c^2}\sum_{l=1}^{n_c^2}k(\boldsymbol{x}_{j,i}^s, \boldsymbol{x}_{c,l}^2), \dots, \frac{1}{n_1^m}\sum_{l=1}^{n_c^2}k(\boldsymbol{x}_{j,i}^s, \boldsymbol{x}_{c,l}^m)\right)^T. \end{split}$$

Supplementary Materials of "Distribution Free Domain Generalization"

Anonymous Authors¹

023 For Proposition 1, the averaged Gram matrix \bar{K} can be denoted as

$$\bar{\boldsymbol{K}} = \begin{bmatrix} \frac{1}{n_1} \sum_{j=1}^{n_1} k_{1j}^{11} & \cdots & \frac{1}{n_m} \sum_{j=1}^{n_m} k_{1j}^{1m} \\ \vdots & \ddots & \vdots \\ \frac{1}{n_1} \sum_{j=1}^{n_1} k_{n_1j}^{11} & \cdots & \frac{1}{n_m} \sum_{j=1}^{n_m} k_{njj}^{1m} \\ \frac{1}{n_1} \sum_{j=1}^{n_1} k_{2j}^{21} & \cdots & \frac{1}{n_m} \sum_{j=1}^{n_m} k_{1j}^{2m} \\ \vdots & \ddots & \vdots \\ \frac{1}{n_1} \sum_{j=1}^{n_1} k_{n2j}^{21} & \cdots & \frac{1}{n_m} \sum_{j=1}^{n_m} k_{n2j}^{2m} \\ \vdots & \ddots & \vdots \\ \frac{1}{n_1} \sum_{j=1}^{n_1} k_{1j}^{m1} & \cdots & \frac{1}{n_m} \sum_{j=1}^{n_m} k_{1j}^{mm} \\ \vdots & \ddots & \vdots \\ \frac{1}{n_1} \sum_{j=1}^{n_1} k_{njj}^{m1} & \cdots & \frac{1}{n_m} \sum_{j=1}^{n_m} k_{njj}^{mm} \end{bmatrix} \in \mathbb{R}^{n \times m},$$

where $k_{ij}^{ss'} := k(\boldsymbol{x}_i^s, \boldsymbol{x}_j^{s'})$ is a simplified notation for the elements in Gram matrix \boldsymbol{K} .

B. Proof of Proposition 1

B.1. Preliminary

For two different variables x_i^s and x_j^s within the same domain, we have

$$\begin{split} \tau^s &:= E(||\boldsymbol{x}_i^s - \boldsymbol{x}_j^s||_2^2/h) = E(||\boldsymbol{\Gamma}^s(\boldsymbol{u}_i^s - \boldsymbol{u}_j^s)||_2^2/h) \\ &= \mathrm{tr}(\boldsymbol{\Gamma}^s E((\boldsymbol{u}_i^s - \boldsymbol{u}_j^s)(\boldsymbol{u}_i^s - \boldsymbol{u}_j^s)^T) \boldsymbol{\Gamma}^{s^T}/h) \\ &= 2\mathrm{tr}(\boldsymbol{\Sigma}^s)/h. \end{split}$$

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author
 (31)
 (32)
 (33)
 (34)
 (35)
 (35)
 (35)
 (36)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)
 (37)

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

5 While for different domains s and s', we can similarly derive that

$$au^{(s,s')} := E(||m{x}^s_i - m{x}^{s'}_j||_2^2/h)$$

$$= \left(\operatorname{tr}(\boldsymbol{\Sigma}^{s}) + \operatorname{tr}(\boldsymbol{\Sigma}^{s'}) + ||\boldsymbol{\eta}^{s} - \boldsymbol{\eta}^{s'}||_{2}^{2} \right) / h.$$

Combining the results in (Yan & Zhang, 2022), we have the following second-order Taylor expansions under assumption 1,

$$f(||\boldsymbol{x}_{i}^{s} - \boldsymbol{x}_{j}^{s}||_{2}^{2}/h) = f(\tau^{s}) + f^{(1)}(\tau^{s})\tilde{X}_{i,j}^{s} + c_{2,\tau^{s}}(\tilde{X}_{i,j}^{s})(\tilde{X}_{i,j}^{s})^{2},$$
(B.1)

$$f(||\boldsymbol{x}_{i}^{s} - \boldsymbol{x}_{j}^{s'}||_{2}^{2}/h) = f(\tau^{(s,s')}) + f^{(1)}(\tau^{(s,s')})\tilde{X}_{i,j}^{(s,s')} + c_{2,\tau^{(s,s')}}(\tilde{X}_{i,j}^{(s,s')})(\tilde{X}_{i,j}^{(s,s')})^{2}, \tag{B.2}$$

where $\tilde{X}_{i,j}^s = ||\boldsymbol{x}_i^s - \boldsymbol{x}_j^s||_2^2/h - \tau^s$, $\tilde{X}_{i,j}^{(s,s')} = ||\boldsymbol{x}_i^s - \boldsymbol{x}_j^{s'}||_2^2/h - \tau^{(s,s')}$, and $c_{2,\tau}(\cdot)$ is a bounded function only depends on τ and function f by Lemma B.1.

Lemma B.1 (Lemma S1 of Yan & Zhang (2022)). Consider a function of the form $h(x) = g((a + x)^{1/2})$ for a > 0 and $x \ge -a$, where g is a real-valued function defined on $[0, +\infty)$. Suppose

$$\sup_{1 \le s \le l+1} \sup_{x \ge 0} |g^{(s)}(x)| < \infty$$

Then we can write h as

$$h(x) = \sum_{s=0}^{l} \frac{h^{(s)}(0)x^s}{s!} + c_{l+1,a}(x)x^{l+1}, \quad \sup_{x \ge -a} |c_{l+1,a}(x)| \le C,$$

for some constant C > 0 and any $x \ge -a$. The subscripts of the function c(x) are used to indicate the dependency on l + 1 and a.

B.2. The proof

Proposition 1. Given Assumption 1, the mean and variance for the elements in \bar{K} are

$$E\left(\frac{1}{n_{s'}}\sum_{j=1}^{n_{s'}}k_{1j}^{ss'}\right) = f(\tau^{(s,s')}) + \frac{f^{(2)}(\tau^{(s,s')})}{2}(\tilde{X}_{i,j}^{(s,s')})^2 + O(p^{3/2}h^{-3}), \tag{B.3}$$

$$var\left(\frac{1}{n_{s'}}\sum_{j=1}^{n_{s'}}k_{1j}^{ss'}\right) = \frac{1}{h^2}\left(f^{(1)}(\tau^{(s,s')})\right)^2\left(2tr(\boldsymbol{\Sigma}^{s^2}) + \sum_{k=1}^{p'}(E(u_i^s(k)^4) - 3)\sigma_{kk}^2 + 4(\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s'})^T\boldsymbol{\Sigma}^s(\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s'})\right) + O(p^2h^{-4}),$$
(B.4)

where $O(\cdot)$ denotes the order of high order non-linear terms and $\Gamma^{s^T} \Gamma^s := (\sigma_{ij})_{p' \times p'}$. While for the covariances, if the two elements are in the same row, we have

$$cov\left(\frac{1}{n_{s'}}\sum_{j=1}^{n_{s'}}k_{ij}^{ss'},\frac{1}{n_{s''}}\sum_{j=1}^{n_{s''}}k_{ij}^{ss''}\right) = O(p^2h^{-2}),\tag{B.5}$$

and if they are in the same column,

$$cov\left(\frac{1}{n_s}\sum_{j=1}^{n_s}k_{ij}^{s's}, \frac{1}{n_s}\sum_{j=1}^{n_s}k_{lj}^{s''s}\right) = O(p^2n_s^{-1}h^{-2}),\tag{B.6}$$

otherwise their covariance equal 0.

¹⁰⁶ *Proof.* To obtain the first two moments of \bar{K} , we consider the following two cases:

109 1. The element $\frac{1}{n_s} \sum_{j=1}^{n_s} k_{ij}^{ss}$ is within the same domain s. 110 2. The element $\frac{1}{n_{s'}} \sum_{j=1}^{n_{s'}} k_{ij}^{ss'}$ is calculated between domain s and s'.

Case 1:

Now for case 1, using the result in (B.1), we have

$$\frac{1}{n_s} \sum_{j=1}^{n_s} k_{ij}^{ss} = \frac{1}{n_s} \left\{ f(0) + (n_s - 1)f(\tau^s) + f^{(1)}(\tau^s) \sum_{\substack{j=1\\j\neq i}}^{n_s} \tilde{X}_{i,j}^s + \sum_{\substack{j=1\\j\neq i}}^{n_s} c_{2,\tau^s} (\tilde{X}_{i,j}^s) (\tilde{X}_{i,j}^s)^2 \right\} \\
= f(\tau^s) + \frac{f^{(1)}(\tau^s)}{hn_s} \sum_{\substack{j=1\\j\neq i}}^{n_s} (\boldsymbol{x}_i^s - \boldsymbol{x}_j^s)^T (\boldsymbol{x}_i^s - \boldsymbol{x}_j^s) - \frac{2(n_s - 1)f^{(1)}(\tau^s)}{hn_s} \operatorname{tr}(\Sigma^s) + \frac{1}{n_s} \sum_{\substack{j=1\\j\neq i}}^{n_s} c_{2,\tau^s} (\tilde{X}_{i,j}^s) (\tilde{X}_{i,j}^s)^2 + O(\frac{1}{n_s}) \\
:= \Delta_0 + \Delta_1 + \Delta_2 + O(\frac{1}{n_s}),$$
(B.7)

where

$$\begin{aligned} & \Delta_{0} = f(\tau^{s}), \\ & 130 \\ & 131 \\ & \Delta_{1} = -\frac{2f^{(1)}(\tau^{s})}{hn_{s}} \sum_{\substack{j=1\\j\neq i}}^{n_{s}} (\boldsymbol{x}_{s}^{s} - \boldsymbol{\eta}^{s})^{T} (\boldsymbol{x}_{j}^{s} - \boldsymbol{\eta}^{s}) + \frac{f^{(1)}(\tau^{s})}{hn_{s}} \sum_{\substack{j=1\\j\neq i}}^{n_{s}} \left\{ ||\boldsymbol{x}_{i}^{s} - \boldsymbol{\eta}^{s}||_{2}^{2} + ||\boldsymbol{x}_{j}^{s} - \boldsymbol{\eta}^{s}||_{2}^{2} \right\} - \frac{2(n_{s} - 1)f^{(1)}(\tau^{s})}{hn_{s}} \text{tr}(\boldsymbol{\Sigma}^{s}), \\ & \lambda_{2} = \frac{1}{n_{s}} \sum_{\substack{j=1\\j\neq i}}^{n_{s}} c_{2,\tau^{s}}(\tilde{X}_{i,j}^{s})(\tilde{X}_{i,j}^{s})^{2}. \end{aligned}$$

Now we will analyze the asymptotic distribution of Δ_1 first. Let us further decompose Δ_1 as

$$\Delta_{11} = -\frac{2f^{(1)}(\tau^s)}{hn_s} \sum_{\substack{j=1\\ i\neq i}}^{n_s} (\boldsymbol{x}_i^s - \boldsymbol{\eta}^s)^T (\boldsymbol{x}_j^s - \boldsymbol{\eta}^s)$$

and

$$\Delta_{12} = \frac{f^{(1)}(\tau^s)}{hn_s} \sum_{\substack{j=1\\j\neq i}}^{n_s} \left\{ ||\boldsymbol{x}_i^s - \boldsymbol{\eta}^s||_2^2 + ||\boldsymbol{x}_j^s - \boldsymbol{\eta}^s||_2^2 \right\} - \frac{2(n_s - 1)f^{(1)}(\tau^s)}{hn_s} \operatorname{tr}(\boldsymbol{\Sigma}^s).$$

Following similar calculations of Chen & Qin (2010), we can show that

$$E(\Delta_{11}) = E(\Delta_{12}) = 0,$$
 (B.8)

$$\operatorname{var}(\Delta_{11}) = \frac{4(n_s - 1)}{h^2 n_s^2} \left(f^{(1)}(\tau^s) \right)^2 \operatorname{tr}(\boldsymbol{\Sigma}^{s^2}), \tag{B.9}$$

$$\operatorname{var}(\Delta_{12}) = \frac{n_s - 1}{h^2 n_s} \left(f^{(1)}(\tau^s) \right)^2 \left(\operatorname{var}(\boldsymbol{u}_i^{s^T} \boldsymbol{\Gamma}^{s^T} \boldsymbol{\Gamma}^s \boldsymbol{u}_i^s) \right)$$
$$\frac{n_s - 1}{h^2 n_s} \left(f^{(1)}(\tau^s) \right)^2 \left(\operatorname{var}(\boldsymbol{\Sigma}^{s^2}) + \sum_{i=1}^{p'} \left(F^{(i,s)}(\tau^s) - 2 \right) - 2 \right)$$

 $=\frac{n_s-1}{h^2 n_s} \left(f^{(1)}(\tau^s)\right)^2 \left(2\mathrm{tr}(\boldsymbol{\Sigma}^{s^2}) + \sum_{j=1}^{p'} (E(u_i^s(j)^4) - 3)\sigma_{jj}^2\right),\tag{B.10}$

where $\Gamma^{s^T}\Gamma^s := (\sigma_{ij})_{p' \times p'}$, and the last equality have used Lemma S2 in Yan & Zhang (2022). Note that $\operatorname{var}(\Delta_{12}) = O(1) \gg \operatorname{var}(\Delta_{11}) = O(n_s^{-1})$, thus $\operatorname{var}(\Delta_1) \approx \operatorname{var}(\Delta_{12})$. Asymptotic normality can not hold here since Δ_{12} contains a $||\boldsymbol{x}_i^s - \boldsymbol{\eta}^s||_2^2$ term which is not affected by the change of sample size n_s .

165	The next goal is to derive the first two moments of Δ_2 . To achieve this, let us first consider the variance:
167	
162	n_s
160	$\operatorname{var}\left(\frac{1}{-\sum} c_{2,\tau^s}(\tilde{X}^s_{i,j})(\tilde{X}^s_{i,j})^2\right)$
170	$(n_s \sum_{j=1}^{j-1} (n_s n_s))$
170	j eq i
172	$-\frac{1}{1}\sum_{s}\sum_{s}\sum_{s}\sum_{s}\sum_{s}\sum_{s}\sum_{s}\sum_{s$
173	$= n_s^2 \sum_{i=1}^{2} \sum_{i'=1}^{2} \frac{\cos((c_{2,\tau^s}(\mathbf{A}_{i,j})(\mathbf{A}_{i,j})', c_{2,\tau^s}(\mathbf{A}_{i,j'})(\mathbf{A}_{i,j'})')}{n_s^2} + n_s^2 \sum_{i=1}^{2} \frac{\sin((c_{2,\tau^s}(\mathbf{A}_{i,j})(\mathbf{A}_{i,j})'))}{n_s^2}$
174	$j \neq i $ $j' \neq i$ $j' \neq i$ $j' \neq i$
175	j eq j'
176	$=\frac{(n_s-1)(n_s-2)}{\cos(n_s-1)(n_s-2)}\cos(n_s(\tilde{X}^s_{s,s})(\tilde{X}^s_{s,s})^2)\cos(n_s(\tilde{X}^s_{s,s})(\tilde{X}^s_{s,s})^2) + \frac{(n_s-1)}{(n_s-1)}\sin(n_s-1)\cos(n_s(\tilde{X}^s_{s,s})(\tilde{X}^s_{s,s})^2)$
177	$n_s^2 \qquad n_s^2 \qquad n_{i,j}^2 (n_{i,j}) (n_{i,j}$
178	$(n_s-1)(n_s-2) \int ((\tilde{v}_s)(\tilde{v}_s)) \int ((\tilde{v}_s)(\tilde{v}_s)) (\tilde{v}_s)(\tilde{v}_s)) (\tilde{v}_s) (\tilde{v}_s$
179	$\leq \frac{1}{n_{s}^{2}} \sqrt{\operatorname{var}\left(c_{2,\tau^{s}}(X_{i,j}^{\circ})(X_{i,j}^{\circ})^{2}\right)} \sqrt{\operatorname{var}\left(c_{2,\tau^{s}}(X_{i,j'}^{\circ})(X_{i,j'}^{\circ})^{2}\right) + \frac{1}{n_{s}^{2}} \operatorname{var}\left(c_{2,\tau^{s}}(X_{i,j}^{\circ})(X_{i,j}^{\circ})^{2}\right) + \frac{1}{n_{s}^{2}} \operatorname{var}\left(c_{2,\tau^{s}}(X_{i,j}^{\circ})^{2}\right) + \frac{1}{n_{s}^{2}} \operatorname{var}\left(c_{2,\tau^{s}}(X_{i,j}^{\circ})(X_{i,j}^{\circ})^{2}\right) + \frac{1}{n_{s}^{2}} \operatorname{var}\left(c_{2,\tau^{s}}(X_{i,j}^{\circ})^{2}\right) + \frac{1}{n_{s}^{2}} \operatorname{var}\left(c_{2,\tau^{s}}(X_{i,j}^{\circ})^{2} \operatorname{var}\left(c_{2,\tau^{s}}(X_{i,j}^{\circ})^{2}\right) + \frac{1}{n_{s}^{2}} \operatorname{var}\left(c$
180	$(n_{\rm e}-1)^2$ (, ~, ~)
181	$=\frac{(r^{s}-\tau)}{n^{2}}\operatorname{var}\left(c_{2,\tau^{s}}(X_{i,j}^{s})(X_{i,j}^{s})^{2}\right)$
182	$(m-1)^2$
183	$\leq \frac{(n_s - 1)}{m^2} E\left(c_{2,\tau^s}^2(\tilde{X}_{i,j}^s)(\tilde{X}_{i,j}^s)^4\right)$
104	n_s (\tilde{r})
186	$=O(1) \times E\left((X_{i,j}^s)^4\right)$
187	$O(1) \sim E\left[\left[(s^T \mathbf{p}_s^T \mathbf{p}_{ss}^s +s^T \mathbf{p}_s^T \mathbf{p}_{ss}^s - 2s^T \mathbf{p}_{ss}^s - 24(\mathbf{n}_s)\right]/L^{\frac{1}{2}}\right]$
188	$=O(1)\times E\left\{\left[\left(\boldsymbol{u}_{i}^{*} \mid 1^{*} \mid 1^{*} \mid \boldsymbol{u}_{i}^{*}+\boldsymbol{u}_{j}^{*} \mid 1^{*} \mid 1^{*} \mid \boldsymbol{u}_{j}^{*}-2\boldsymbol{u}_{i}^{*} \mid 1^{*} \mid 1^{*} \mid \boldsymbol{u}_{j}^{*}-2\boldsymbol{\mathrm{tf}}(\boldsymbol{\Sigma}^{*})\right)/h\right]^{*}\right\}.$
189	
190	Using Jansan's inequality, we have
191	Using Jensen's inequality, we have
192	
193	$E\left\{\left[\left(\boldsymbol{u}_{s}^{s^{T}}\boldsymbol{\Gamma}^{s^{T}}\boldsymbol{\Gamma}^{s}\boldsymbol{u}_{s}^{s}+\boldsymbol{u}_{s}^{s^{T}}\boldsymbol{\Gamma}^{s^{T}}\boldsymbol{\Gamma}^{s}\boldsymbol{u}_{s}^{s}-2\boldsymbol{u}_{s}^{s^{T}}\boldsymbol{\Gamma}^{s^{T}}\boldsymbol{\Gamma}^{s}\boldsymbol{u}_{s}^{s}-2\mathrm{tr}(\boldsymbol{\Sigma}^{s})\right)/h\right]^{4}\right\}$
194	$= \left[\left[\left(\alpha_i + \alpha_j +$
195	$< \frac{C}{14} \Big[E((\boldsymbol{u}_{i}^{s^{T}} \boldsymbol{\Gamma}^{s^{T}} \boldsymbol{\Gamma}^{s} \boldsymbol{u}_{i}^{s} - \operatorname{tr}(\boldsymbol{\Sigma}^{s}))^{4}) + E((\boldsymbol{u}_{i}^{s^{T}} \boldsymbol{\Gamma}^{s^{T}} \boldsymbol{\Gamma}^{s} \boldsymbol{u}_{i}^{s})^{4}) \Big],$
196	$-h^4 \lfloor \cdots \end{pmatrix} $
197	
190	for some constant $C > 0$. By applying Lemma S4 and S5 of Yan & Zhang (2022), we know that
200	
201	
202	$E((\boldsymbol{u}_i^{s^*} \boldsymbol{\Gamma}^{s^*} \boldsymbol{\Gamma}^s \boldsymbol{u}_i^s - \operatorname{tr}(\boldsymbol{\Sigma}^s))^4) = O(\operatorname{tr}^2(\boldsymbol{\Sigma}^{s^*})) = O(p^2),$
203	$E((\boldsymbol{u}^{s^T} \boldsymbol{\Gamma}^{s^T} \boldsymbol{\Gamma}^s \boldsymbol{u}^s)^4) = O(\operatorname{tr}^2(\boldsymbol{\Sigma}^{s^2})) = O(n^2).$
204	$E\left(\left(\alpha_{i}^{2}-2,\alpha_{j}^{2}\right)\right) = 0 \left(\alpha_{i}^{2}\left(2,\beta_{j}^{2}\right)\right)$
205	
206	Hence
207	
208	$\begin{pmatrix} 1 & n_s \\ n_s & n_s \end{pmatrix}$
209	$\operatorname{var}\left(\frac{1}{n_{*}}\sum c_{2,\tau^{s}}(X_{i,j}^{s})(X_{i,j}^{s})^{2}\right) = O(p^{2}/h^{4}). \tag{B.11}$
210	$\sum_{\substack{j=1\\j\neq i}}^{j}$
$\angle 11$	J / *

Similarly, we can establish the order for $E(\Delta_2)$. First, using the connection between Taylor expansion, we know that

 $c_{2,\tau^s}(\tilde{X}^s_{i,j})(\tilde{X}^s_{i,j})^2 = \frac{f^{(2)}(\tau^s)}{2}(\tilde{X}^s_{i,j})^2 + c_{3,\tau^s}(\tilde{X}^s_{i,j})(\tilde{X}^s_{i,j})^3.$

$$\begin{split} & \left| E(c_{2,\tau^{s}}(\tilde{X}_{i,j}^{s})(\tilde{X}_{i,j}^{s})^{2}) - \frac{1}{2}f^{(2)}(\tau^{s})E((\tilde{X}_{i,j}^{s})^{2}) \right| \\ &= \left| E(c_{2,\tau^{s}}(\tilde{X}_{i,j}^{s})(\tilde{X}_{i,j}^{s})^{2} - \frac{1}{2}f^{(2)}(\tau^{s})(\tilde{X}_{i,j}^{s})^{2}) \right| \\ &\leq E\left(\left| c_{2,\tau^{s}}(\tilde{X}_{i,j}^{s})(\tilde{X}_{i,j}^{s})^{2} - \frac{1}{2}f^{(2)}(\tau^{s})(\tilde{X}_{i,j}^{s})^{2} \right| \right) \\ &= E\left(\left| c_{2,\tau^{s}}(\tilde{X}_{i,j}^{s}) - \frac{1}{2}f^{(2)}(\tau^{s}) \right| (\tilde{X}_{i,j}^{s})^{2} \right) \\ &= E\left(\left| c_{3,\tau^{s}}(\tilde{X}_{i,j}^{s})(\tilde{X}_{i,j}^{s}) \right| (\tilde{X}_{i,j}^{s})^{2} \right) \\ &= O(1) \times E\left(\left| \tilde{X}_{i,j}^{s} \right|^{3} \right) \\ &\leq O(p^{3/2}/h^{3}). \end{split}$$
(B.12)

The last piece of the variance is $cov(\Delta_1, \Delta_2)$. Since $E(\Delta_1) = 0$, we have

$$\begin{aligned} &\operatorname{cov}(\Delta_{1},\Delta_{2}) = E(\Delta_{1}\Delta_{2}) \\ = & E\Big\{ \big(\frac{1}{n_{s}}f^{(1)}(\tau^{s})\sum_{\substack{j=1\\j\neq i}}^{n_{s}}\tilde{X}_{i,j}^{s}\big) \big(\frac{1}{n_{s}}\sum_{\substack{j'=1\\j'\neq i}}^{n_{s}}c_{2,\tau^{s}}(\tilde{X}_{i,j'}^{s})(\tilde{X}_{i,j'}^{s})^{2}\big) \Big\} \\ = & E\Big\{ \frac{f^{(1)}(\tau^{s})}{n_{s}^{2}}\sum_{j}c_{2,\tau^{s}}(\tilde{X}_{i,j'}^{s})(\tilde{X}_{i,j'}^{s})^{3} + \frac{f^{(1)}(\tau^{s})}{n_{s}^{2}}\sum_{j}\sum_{j'\neq j}(\tilde{X}_{i,j}^{s})c_{2,\tau^{s}}(\tilde{X}_{i,j'}^{s})(\tilde{X}_{i,j'}^{s})^{2}\big) \Big\} \\ \leq & O(p^{3/2}/(n_{s}h^{3})), \end{aligned}$$
(B.13)

which means the covariance between Δ_1 and Δ_2 is negligible for large sample size.

Combining (B.7) to (B.13), we conclude that for case 1,

$$E(\frac{1}{n_s}\sum_{j=1}^{n_s}k_{ij}^{ss}) = f(\tau^s) + \frac{1}{2}f^{(2)}(\tau^s)E((\tilde{X}_{i,j}^s)^2) + O(p^{3/2}/h^3)$$
(B.14)

$$\operatorname{var}\left(\frac{1}{n_s}\sum_{j=1}^{n_s}k_{ij}^{ss}\right) = \frac{n_s - 1}{h^2 n_s} \left(f^{(1)}(\tau^s)\right)^2 \left(2\operatorname{tr}(\boldsymbol{\Sigma}^{s^2}) + \sum_{j=1}^{p'} (E(u_i^s(j)^4) - 3)\sigma_{jj}^2\right) + O(p^2/h^4).$$
(B.15)

Case 2:

²⁶⁸ For case 2, we can similarly obtain that

$$\frac{1}{n_{s'}} \sum_{j=1}^{n_{s'}} k_{ij}^{ss'} := \Delta_0 + \Delta_{11} + \Delta_{12} + \Delta_{13} + \Delta_2, \tag{B.16}$$

275	where	
276		
277		$\Delta_0 = f(\tau^{(s,s')}),$
278		$\Omega f(1)(\sigma(s,s')) \stackrel{n_{s'}}{\longrightarrow}$
279		$\Delta_{11} = - rac{2J^{(\gamma(\gamma+\gamma))}}{I} \sum (\boldsymbol{x}_i^s - \boldsymbol{\eta}^s)^T (\boldsymbol{x}_i^{s'} - \boldsymbol{\eta}^{s'}),$
280		$hn_{s'}$ $\sum_{j=1}^{j=1}$
281		$f(1)(\tau(s,s')) \stackrel{n_{s'}}{\longrightarrow} f(1)(\tau(s,s'))$
282		$\Delta_{12} = \frac{f \cdot (\tau \cdot \tau^{s})}{hr} \sum \left(\boldsymbol{x}_{i}^{s} - \boldsymbol{\eta}^{s} _{2}^{2} + \boldsymbol{x}_{j}^{s'} - \boldsymbol{\eta}^{s'} _{2}^{2} \right) - \frac{f \cdot (\tau \cdot \tau^{s})}{h} (\operatorname{tr}(\boldsymbol{\Sigma}^{s}) + \operatorname{tr}(\boldsymbol{\Sigma}^{s'})),$
283		$nn_{s'}$ $\frac{1}{j=1}$
284		$2f^{(1)}(\tau^{(s,s')})$, $2f^{(1)}(\tau^{(s,s')}) \stackrel{n_{s'}}{\longrightarrow}$
285		$\Delta_{13} = \frac{2j - (j - j)}{h} (x_i^s - \eta^s)^T (\eta^s - \eta^{s'}) - \frac{2j - (j - j)}{h} \sum (x_j^{s'} - \eta^{s'})^T (\eta^s - \eta^{s'}),$
286		n n n n n n n n n n n n n n n n n n n
287		$1 \frac{n_{s'}}{s}$
288		$\Delta_2 = \frac{1}{n} \sum c_{2,\tau^{(s,s')}} (X_{i,j}^{(s,s')}) (X_{i,j}^{(s,s')})^2.$
289		$n_{s'} \frac{1}{j=1}$
290		1.1 1
291	Meanw	hile, we have

$E(\Delta_{11}) = E(\Delta_{12}) = E(\Delta_{13}) = 0, \tag{B.17}$

$$\operatorname{var}(\Delta_{11}) = \frac{4}{h^2 n_{s'}} \left(f^{(1)}(\tau^{(s,s')}) \right)^2 \operatorname{tr}(\boldsymbol{\Sigma}^s \boldsymbol{\Sigma}^{s'}), \tag{B.18}$$

$$\operatorname{var}(\Delta_{12}) = \frac{1}{h^2} \left(f^{(1)}(\tau^{(s,s')}) \right)^2 \left(2\operatorname{tr}(\boldsymbol{\Sigma}^{s^2}) + \sum_{k=1}^{p'} (E(u_i^s(k)^4) - 3)\sigma_{kk}^2 \right) + O(\frac{1}{n_{s'}}), \tag{B.19}$$

$$\operatorname{var}(\Delta_{13}) = \frac{4}{h^2} \left(f^{(1)}(\tau^{(s,s')}) \right)^2 (\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s'})^T \boldsymbol{\Sigma}^s (\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s'}) + O(\frac{1}{n_{s'}}), \tag{B.20}$$

302 and

$$\begin{aligned}
& \text{var}(\Delta_{2}) \leq \text{var}\Big(c_{2,\tau^{(s,s')}}(\tilde{X}_{i,j}^{(s,s')})(\tilde{X}_{i,j}^{(s,s')})^{2}\Big) \\
& \leq \frac{1}{h^{4}}\Big\{E\Big((u_{i}^{s^{T}}\Gamma^{s^{T}}\Gamma^{s}u_{i}^{s} - \operatorname{tr}(\Sigma^{s}))^{4}\Big) + E\Big((u_{j}^{s^{\prime T}}\Gamma^{s^{\prime T}}\Gamma^{s^{\prime}}u_{i}^{s^{\prime}} - \operatorname{tr}(\Sigma^{s^{\prime}}))^{4}\Big) + E\Big((2u_{i}^{s^{T}}\Gamma^{s^{T}}\Gamma^{s^{\prime}}u_{j}^{s^{\prime}})^{4}\Big) + \\
& E\Big((2u_{i}^{s^{T}}\Gamma^{s^{T}}(\eta^{s} - \eta^{s^{\prime}}))^{4}\Big) + E\Big((2u_{j}^{s^{\prime T}}\Gamma^{s^{\prime T}}(\eta^{s} - \eta^{s^{\prime}}))^{4}\Big)\Big\} \\
& = \frac{1}{h^{4}}\Big\{O(\operatorname{tr}^{2}(\Sigma^{s^{2}})) + O(\operatorname{tr}^{2}(\Sigma^{s^{\prime 2}})) + O(\operatorname{tr}^{2}(\Sigma^{s}\Sigma^{s^{\prime}})) + O(((\eta^{s} - \eta^{s^{\prime}})^{T}\Sigma^{s}(\eta^{s} - \eta^{s^{\prime}}))^{2}) + \\
& O(((\eta^{s} - \eta^{s^{\prime}})^{T}\Sigma^{s^{\prime}}(\eta^{s} - \eta^{s^{\prime}}))^{2})\Big\} \\
& = O(p^{2}/h^{4}),
\end{aligned}$$
(B.21)

$$E(\Delta_2) = E(c_{2,\tau^{(s,s')}}(\tilde{X}_{i,j}^{(s,s')})(\tilde{X}_{i,j}^{(s,s')})^2) = \frac{f^{(2)}(\tau^{(s,s')})}{2}(\tilde{X}_{i,j}^{(s,s')})^2 + O(p^{3/2}/h^3),$$
(B.22)

$$\frac{316}{317} \quad \operatorname{cov}(\Delta_1, \Delta_2) \le O(p^{3/2} / (n_{s'} h^3)). \tag{B.23}$$

319 Thus, for case 2, by (B.16) to (B.23), we have shown that

$$E(\frac{1}{n_{s'}}\sum_{j=1}^{n_{s'}}k_{ij}^{ss'}) = f(\tau^{(s,s')}) + \frac{f^{(2)}(\tau^{(s,s')})}{2}(\tilde{X}_{i,j}^{(s,s')})^2 + O(p^{3/2}/h^3), \tag{B.24}$$

$$\begin{aligned} & \overset{j=1}{\underset{225}{324}} & \operatorname{var}(\frac{1}{n_{s'}}\sum_{j=1}^{n_{s'}}k_{ij}^{ss'}) = \frac{1}{h^2} \left(f^{(1)}(\tau^{(s,s')})\right)^2 \left(2\operatorname{tr}(\boldsymbol{\Sigma}^{s^2}) + \sum_{k=1}^{p'}(E(u_i^s(k)^4) - 3)\sigma_{kk}^2 + 4(\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s'})^T \boldsymbol{\Sigma}^s(\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s'})\right) + O(p^2/h^4). \end{aligned}$$

$$\end{aligned}$$

$$\end{aligned} \tag{B.25}$$

 $\begin{array}{l} 328\\ 329 \end{array} \quad \text{Combining (B.14) and (B.15), as well as (B.24) and (B.25), we have proofed the results in (B.3) and (B.4).} \end{array}$

Covariance terms:

Consider the covariance terms, if they are in the same row, one can verify that

$$\operatorname{cov}(\frac{1}{n_{s'}}\sum_{j=1}^{n_{s'}}k_{ij}^{ss'}, \frac{1}{n_{s''}}\sum_{j=1}^{n_{s''}}k_{ij}^{ss''}) = \operatorname{cov}(\Delta_{11}^{ss'} + \Delta_{12}^{ss'} + \Delta_{2}^{ss'}, \Delta_{11}^{ss''} + \Delta_{12}^{ss''} + \Delta_{2}^{ss''}),$$
(B.26)

where

$$\begin{split} \Delta_{11}^{ss'} = & \frac{f^{(1)}(\tau^{(s,s')})}{h} \Big\{ || \boldsymbol{x}_i^s - \boldsymbol{\eta}^s ||_2^2 - \operatorname{tr}(\boldsymbol{\Sigma}^s) \Big\}, \\ \Delta_{12}^{ss'} = & \frac{2f^{(1)}(\tau^{(s,s')})}{h} (\boldsymbol{x}_i^s - \boldsymbol{\eta}^s)^T (\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s'}), \\ \Delta_{2}^{ss'} = & \frac{1}{n_{s'}} \sum_{j=1}^{n_{s'}} c_{2,\tau^{(s,s')}} (\tilde{X}_{i,j}^{(s,s')}) (\tilde{X}_{i,j}^{(s,s')})^2, \end{split}$$

and $\Delta_{11}^{ss''}, \Delta_{12}^{ss''}, \Delta_{2}^{ss''}$ are defined analogically. We then handle all the covariance terms as follows,

$$\begin{array}{c} 57 \\ 58 \\ \end{array} = O(p^2/h^2), \tag{B.28}$$

$$\begin{aligned} \cos(\Delta_{12}^{ss'}, \Delta_{12}^{ss''}) &= \frac{2}{h^2} f^{(1)}(\tau^{(s,s')}) f^{(1)}(\tau^{(s,s'')}) (\eta^s - \eta^{s'})^T \Sigma^s (\eta^s - \eta^{s''}) \\ &= O(p^2/h^2), \end{aligned} \tag{B.30}$$

$$(A_{25}^{ss'}, A_{25}^{ss''}) \in \frac{2^C}{2^C} f^{(1)}(\tau^{(s,s')}) \nabla [(1, s_1, s_2)]^2 (\tau^{(s,s'')}) \nabla f^{(1)}(\tau^{(s,s'')}) \nabla f^{(1)}(\tau^{(s,s'')}) \nabla f^{(s,s'')}) \nabla f^{(s,s'')} (\tau^{(s,s'')}) \nabla f^{(s,s'')} (\tau^{(s,s''$$

$$\begin{aligned}
\overset{369}{370} & \operatorname{cov}(\Delta_{12}^{ss'}, \Delta_{2}^{ss''}) \leq \frac{2C}{h^2} f^{(1)}(\tau^{(s,s')}) E\left\{ || \boldsymbol{x}_i^s - \boldsymbol{\eta}^s ||_2^2 (\boldsymbol{x}_i^s - \boldsymbol{\eta}^s)^T (\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s'}) + 2(\boldsymbol{x}_i^s - \boldsymbol{\eta}^s)^T (\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s'}) (\boldsymbol{x}_i^s - \boldsymbol{\eta}^s)^T (\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s''}) \right\} \\
\overset{371}{372} & = \frac{4C}{h^2} f^{(1)}(\tau^{(s,s')}) (\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s'})^T \boldsymbol{\Sigma}^s (\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s''}) + O(p^2/h^2) \\
&= O(p^2/h^2), \end{aligned} \tag{B.31}$$

$$\begin{aligned} & \operatorname{cov}(\Delta_{2}^{ss'}, \Delta_{2}^{ss''}) = \operatorname{cov}\left\{\frac{1}{h^{2}n_{s'}} \sum_{j=1}^{n_{s'}} c_{2,\tau^{(s,s')}}(\tilde{X}_{i,j}^{(s,s')})(||\boldsymbol{x}_{i}^{s} - \boldsymbol{\eta}^{s}||_{2}^{2} - \operatorname{tr}(\boldsymbol{\Sigma}^{s}) + 2(\boldsymbol{x}_{i}^{s} - \boldsymbol{\eta}^{s})^{T}(\boldsymbol{\eta}^{s} - \boldsymbol{\eta}^{s'})), \\ & \frac{1}{h^{2}n_{s''}} \sum_{j=1}^{n_{s''}} c_{2,\tau^{(s,s'')}}(\tilde{X}_{i,j}^{(s,s'')})(||\boldsymbol{x}_{i}^{s} - \boldsymbol{\eta}^{s}||_{2}^{2} - \operatorname{tr}(\boldsymbol{\Sigma}^{s}) + 2(\boldsymbol{x}_{i}^{s} - \boldsymbol{\eta}^{s})^{T}(\boldsymbol{\eta}^{s} - \boldsymbol{\eta}^{s'})) \right\} \\ & 380 \end{aligned}$$

$$\leq \frac{C^2}{h^4} \Big((2 \operatorname{tr}(\boldsymbol{\Sigma}^{s^2}) + \sum_{j=1}^p (E(u_i^s(j)^4) - 3)\sigma_{jj}^2) + 4(\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s'})^T \boldsymbol{\Sigma}^s(\boldsymbol{\eta}^s - \boldsymbol{\eta}^{s''}) + O(p^2/h^2) \Big)$$

$$= O(p^2/h^4),$$
(B.32)

$$\begin{aligned} \operatorname{cov}(\frac{1}{n_{s'}}\sum_{j=1}^{n_{s'}}k_{ij}^{ss'}, \frac{1}{n_{s''}}\sum_{j=1}^{n_{s''}}k_{ij}^{ss''}) = &\operatorname{cov}(\Delta_{11}^{ss'}, \Delta_{11}^{ss''}) + 2\operatorname{cov}(\Delta_{11}^{ss'}, \Delta_{12}^{ss''}) + 2\operatorname{cov}(\Delta_{11}^{ss'}, \Delta_{2}^{ss''}) + \operatorname{cov}(\Delta_{12}^{ss'}, \Delta_{2}^{ss''}) + 2\operatorname{cov}(\Delta_{11}^{ss'}, \Delta_{2}^{ss''}) + 2\operatorname{cov}(\Delta_{11}^{ss''}, \Delta_{2}^$$

Next, for two elements within the same column, we have

$$\operatorname{cov}(\frac{1}{n_s}\sum_{j=1}^{n_s}k_{ij}^{s's}, \frac{1}{n_s}\sum_{j=1}^{n_s}k_{lj}^{s''s}) = \operatorname{cov}(\Delta_{11}^{s's} + \Delta_{12}^{s's} + \Delta_{2}^{s's}, \Delta_{11}^{s''s} + \Delta_{12}^{s''s} + \Delta_{2}^{s''s}),$$

405 where

$$\begin{split} \Delta_{11}^{s's} = & \frac{f^{(1)}(\tau^{(s,s')})}{hn_s} \sum_{j=1}^{n_s} \Big\{ ||\boldsymbol{x}_j^s - \boldsymbol{\eta}^s||_2^2 - \operatorname{tr}(\boldsymbol{\Sigma}^s) \Big\}, \\ \Delta_{12}^{s's} = & -\frac{2f^{(1)}(\tau^{(s,s')})}{hn_s} \sum_{j=1}^{n_s} (\boldsymbol{x}_j^s - \boldsymbol{\eta}^s)^T (\boldsymbol{\eta}^{s'} - \boldsymbol{\eta}^s), \\ \Delta_{2}^{s's} = & \frac{1}{n_s} \sum_{j=1}^{n_s} c_{2,\tau^{(s,s')}} (\tilde{X}_{i,j}^{(s',s)}) (\tilde{X}_{i,j}^{(s',s)})^2, \end{split}$$

and $\Delta_{11}^{s''s}$, $\Delta_{12}^{s''s}$, $\Delta_2^{s''s}$ are defined analogically. Mimic the previous calculation, we have

$$\begin{aligned} & 419 \\ & 420 \\ & 421 \\ & 422 \\ &$$

,

which means $\operatorname{cov}(\frac{1}{n_s}\sum_{j=1}^{n_s}k_{ij}^{s's}, \frac{1}{n_s}\sum_{j=1}^{n_s}k_{lj}^{s''s}) = O(n_s^{-1})$ for fixed h and p. To complete our discussion, if two elements are not within the same row or column, we have their covariance equal 0.

C. Proof of Theorem 1

C.1. Preliminary

To prove Theorem 1, we first present the classical generalization bound towards IID data. The empirical ρ -margin loss in IID scenario given g and $\rho > 0$ is denoted as

$$\hat{R}_{n,\rho}(g) = \frac{1}{n} \sum_{i=1}^{n} l_{\rho}(r_g(\tilde{\boldsymbol{x}}_i, y_i))$$

Consider the set of scoring functions $g \in \mathcal{G}$, we define $\Pi(\mathcal{G})$ by

$$\Pi(\mathcal{G}) = \{ \tilde{\boldsymbol{x}} \mapsto g(\tilde{\boldsymbol{x}}, y) : y \in \mathcal{Y}, g \in \mathcal{G} \},\$$

and the Rademacher complexity

$$\Re_n(\Pi(\mathcal{G})) = E_{(\tilde{x}, y), \sigma} \Big\{ \sup_{g \in \mathcal{G}} \sum_{i=1}^n \sigma_i g(\tilde{x}_i, y) \Big\},\$$

where $\sigma_i \in \{-1, 1\}$ are independent Rademacher random variables with equally probabilities.

The following theorem gives a generalization bound for multi-class classification.

Lemma C.1 (Theorem 9.2 of Mohri et al. (2018)). Let $\mathcal{G} \subset \mathbb{R}^{\mathcal{X} \times \mathcal{Y}}$ be a set of scoring functions with $\mathcal{Y} = \{1, \ldots, c\}$. Fix $\rho > 0$, for any $\delta > 0$, with probability at least $1 - \delta$, the following multi-class classification generalization bound holds for all $g \in \mathcal{G}$:

$$R(g) \leq \hat{R}_{n,\rho}(g) + \frac{4c}{\rho} \mathfrak{R}_n(\Pi(\mathcal{G})) + \sqrt{\frac{\log \delta^{-1}}{2n}}.$$

Combining our kernel based distribution free domain generalization algorithm and a linear classifier, we can further upper bound the Rademacher complexity $\Re_n(\Pi(\mathcal{G}))$ as follows.

Lemma C.2 (Modified from Proposition 9.3 of Mohri et al. (2018)). Let $\bar{k} : \tilde{\mathcal{X}} \times \tilde{\mathcal{X}} \to \mathbb{R}$ be a positive definite symmetric kernel and let $\phi_{\bar{k}} : \tilde{\mathcal{X}} \to \mathcal{H}_{\bar{k}}$ be a feature mapping associated to \bar{k} . Assume that there exists r > 0 such that $\bar{k}(\tilde{x}, \tilde{x}) \leq r^2$ for all $\tilde{x} \in \tilde{\mathcal{X}}$. Then, for any $n \geq 1$, $\mathfrak{R}_n(\Pi(\mathcal{G}_{\bar{k}}))$ can be bounded as follows:

$$\mathfrak{R}_n(\Pi(\mathcal{G}_{\bar{k}})) \le \sqrt{\frac{r^2 q^2 \Lambda^2}{n}}.$$

We note that by Assumption 2, \bar{k} is a universal kernel (Blanchard et al., 2011), thus is also a positive definite symmetric kernel (Sriperumbudur et al., 2011). The following Lemma gives the upper bound of \bar{k} .

Lemma C.3. Assume Assumption 2 holds, the kernel \bar{k} is bounded using Cauchy-Schwarz inequality on the equation $\bar{k}(\tilde{x}, \tilde{x}) = \langle \bar{k}(\tilde{x}, \cdot), \bar{k}(\tilde{x}, \cdot) \rangle$, say

$$\|\bar{k}(\tilde{x},\cdot)\| = \|\Re(\mu(P_X),\cdot) \otimes k_1(\boldsymbol{x},\cdot)\| \le U_1 \|\Re(\mu(P_X),\cdot)\| \le L_{\Re} U_1 U_2.$$
(C.33)

Since all the conditions required by Lemma C.2 are satisfied. We finally give the generalization bound combining the results in Lemmas C.1 and C.2.

Theorem C.1. Let $\bar{k} : \tilde{\mathcal{X}} \times \tilde{\mathcal{X}} \to \mathbb{R}$ be a positive definite symmetric kernel and let $\phi_{\bar{k}} : \tilde{\mathcal{X}} \to \mathcal{H}_{\bar{k}}$ be a feature mapping associated to \bar{k} . Assume that there exists r > 0 such that $\bar{k}(\tilde{x}, \tilde{x}) \leq r^2$ for all $\tilde{x} \in \tilde{\mathcal{X}}$. Fix $\rho > 0$, for any $\delta > 0$, with probability at least $1 - \delta$, the following multi-class classification generalization bound holds for all $g \in \mathcal{G}_{\bar{k}}$:

$$R(g) \le \hat{R}_{n,\rho}(g) + \frac{4cq}{\rho} \sqrt{\frac{r^2 \Lambda^2}{n}} + \sqrt{\frac{\log \delta^{-1}}{2n}}.$$
(C.34)

We note that (C.34) is only applicable if we treat (\tilde{x}, y) IID in training and test domains. However, (\tilde{x}, y) is not IID even within a given class and domain, and we need a new generalization bound as stated in Theorem 1.

495 C.2. The proof

497 To begin our proof, we first decompose $R(g) - \hat{R}_{n,\rho}(g)$ into two parts.

$$\begin{split} R(g) - \hat{R}_{n,\rho}(g) = & R(g) - \frac{1}{cm} \sum_{s=1}^{m} \sum_{j=1}^{c} \frac{1}{\bar{n}} \sum_{i=1}^{\bar{n}} l_{\rho}(r_{g}(\tilde{\boldsymbol{x}}_{j,i}^{s}, j)) \\ \leq & \left| \frac{1}{cm} \sum_{s=1}^{m} \sum_{j=1}^{c} \frac{1}{\bar{n}} \sum_{i=1}^{\bar{n}} \left[l_{\rho}(r_{g}(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, j) - l_{\rho}(r_{g}(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, j)) \right] \right| + \\ & \left\{ R(g) - \frac{1}{cm} \sum_{s=1}^{m} \sum_{j=1}^{c} \frac{1}{\bar{n}} \sum_{i=1}^{\bar{n}} l_{\rho}(r_{g}(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, j)) \right\} \\ & := (I) + (II) \end{split}$$

511 To control the first term, we have 512

$$\begin{aligned} & \left\{ I \right\} \leq \frac{1}{cm} \sum_{s=1}^{m} \sum_{j=1}^{c} \frac{1}{\bar{n}} \sum_{i=1}^{\bar{n}} \left| l_{\rho}(r_{g}(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, j)) - l_{\rho}(r_{g}(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, j)) \right| \\ & \leq \frac{1}{cm} \sum_{s=1}^{m} \sum_{j=1}^{c} \frac{1}{\bar{n}} \sum_{i=1}^{\bar{n}} \left| r_{g}(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, j) - r_{g}(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, j) \right| \\ & \leq \frac{1}{\rho cm} \sum_{s=1}^{m} \sum_{j=1}^{c} \frac{1}{\bar{n}} \sum_{i=1}^{\bar{n}} \left\{ \left| g(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, j) - g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, j) \right| + \right. \\ & \left| \max_{y' \neq j} (g(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y')) - \max_{y' \neq j} (g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y')) \right| \right\} \\ & \leq \frac{1}{\rho cm} \sum_{s=1}^{m} \sum_{j=1}^{c} \left\| \left\{ \left| g(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, j) - g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, j) \right| + \right. \\ & \left| \max_{y' \neq j} (g(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y')) - \max_{y' \neq j} (g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y)) \right| \right\} \right\|_{\infty}. \end{aligned}$$

$$(C.35)$$

531 If $\max_{y' \neq j}(g(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y')) - \max_{y' \neq j}(g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y')) \ge 0$, let $y_{max} = \arg\max_{y' \neq j}(g(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y'))$, 532 then

$$\max_{y'\neq j}(g(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y')) - \max_{y'\neq j}(g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y')) \le g(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y_{max}) - g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y_{max}) - g(P_{X|Y=j}^{s}, y_{max}) - g(P_{X|Y=j}^{s},$$

 $\begin{array}{lll} & 537\\ 538\\ 538\\ 539\\ & \arg\max_{y'\neq j}(g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y')) & - \max_{y'\neq j}(g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y')) & < 0, \quad \text{let} \quad y_{max} = \\ & 539\\ 540\\ & 540 \end{array}$

$$\max_{y'\neq j}(g(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y')) - \max_{y'\neq j}(g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y')) \ge g(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y_{max}) - g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y_{max}).$$

545 Hence,

$$\left| \max_{\substack{y' \neq j}} \left(g(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y') \right) - \max_{\substack{y' \neq j}} \left(g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y') \right) \right| \le \left| g(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y_{max}) - g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y_{max}) \right|.$$
(C.36)

For a given $y \in \{1, \ldots, c\}$, note that

552
553
$$\left| g(\hat{P}_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y) - g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^{s}, y) \right|$$

$$\leq \mid \mid \boldsymbol{a}_{n}^{T} \boldsymbol{W}^{T} \mid \mid \times$$

$$\begin{split} &\leq \mid\mid \! \boldsymbol{a}_{y}^{T}\boldsymbol{W}^{T}\mid\mid \times \mid\mid \! \phi_{\bar{k}}(\hat{P}_{X\midY=j}^{(s)},\boldsymbol{x}_{j,i}^{s}) - \phi_{\bar{k}}(P_{X\midY=j}^{(s)},\boldsymbol{x}_{j,i}^{s})\mid\mid \\ &\leq \! q\Lambda(k_{1}(\boldsymbol{x}_{j,i}^{s},\boldsymbol{x}_{j,i}^{s}))^{1/2}\mid\mid \! \phi_{\mathfrak{K}}(\mu_{\hat{P}_{X\midY=j}^{(s)}}) - \phi_{\mathfrak{K}}(\mu_{P_{X\midY=j}^{(s)}})\mid\mid \end{split}$$

$$\leq q \Lambda U_1 L_{\hat{\mathfrak{K}}} || \mu_{\hat{P}_{X|Y=j}^{(s)}} - \mu_{P_{X|Y=j}^{(s)}} ||$$

By applying the Hoeffding's inequality in a Hilbert space, with probability $1 - \delta$,

$$||\frac{1}{\bar{n}}\sum_{i=1}^{\bar{n}}\phi_{k_2}(\boldsymbol{x}_{j,i}^s) - \mu_{P_{X|Y=j}^{(s)}}|| \le 3U_2\sqrt{\frac{\log 2\delta^{-1}}{\bar{n}}}$$
(C.38)

Combining (C.35) to (C.38), with the union bound over all domain and classes, with probability $1 - \delta$, we have

 $= q\Lambda U_1 L_{\mathfrak{K}} || \frac{1}{\bar{n}} \sum_{i=1}^{\bar{n}} \phi_{k_2}(\boldsymbol{x}_{j,i}^s) - \mu_{P_{X|Y=j}^{(s)}} ||.$

$$(I) \le \frac{6}{\rho} q \Lambda U_1 U_2 L_{\mathfrak{K}} \sqrt{\frac{\log 2cm\delta^{-1}}{\bar{n}}},\tag{C.39}$$

(C.37)

which gives the upper bound towards (I).

Next, we will turn to control the second term (II). To achieve this, we first define the expected ρ -margin loss condition on $P_{X|Y=j}^{(s)}$ as

$$R(g|P_{X|Y=j}^{(s)}) = E_{\tilde{x} \sim P_{X|Y=j}^{(s)}} I(r_g(\tilde{x}_i, j) \le 0),$$

and further decompose (II) as

$$(II) = \frac{1}{cm} \sum_{s=1}^{m} \sum_{j=1}^{c} \frac{1}{\bar{n}} \sum_{i=1}^{\bar{n}} \left\{ R(g|P_{X|Y=j}^{(s)}) - l_{\rho}(r_g(P_{X|Y=j}^{(s)}, \boldsymbol{x}_{j,i}^s, j)) \right\} + \frac{1}{cm} \sum_{s=1}^{m} \sum_{j=1}^{c} \left\{ R(g) - R(g|P_{X|Y=j}^{(s)}) \right\}$$
$$:= (IIa) + (IIb)$$

Now for (IIa), noticed that given $P_{X|Y=j}^{(s)}$, $\boldsymbol{x}_{j,i}^{s}$ are IID generated within domain s and class j. While for (IIb), $P_{X|Y=j}^{(s)}$ are IID generated since we have assumed $n_{j}^{s} = \bar{n}$. Thus, we can apply Theorem C.1 to upper bound (IIa) and (IIb), as stated below.

$$II(a) \leq \frac{4cq\Lambda U_1 U_2 L_{\Re}}{\rho cm} \sqrt{\sum_{s,j} \frac{1}{\bar{n}}} + \frac{1}{cm} \sqrt{\sum_{s,j} \frac{\log \delta^{-1}}{2\bar{n}}}$$
$$= \frac{4}{\rho} q\Lambda U_1 U_2 L_{\Re} \sqrt{\frac{c}{m\bar{n}}} + \sqrt{\frac{\log \delta^{-1}}{2cm\bar{n}}}, \tag{C.40}$$

$$II(b) \leq \frac{4}{\rho} q \Lambda U_1 U_2 L_{\Re} \sqrt{\frac{c}{m}} + \sqrt{\frac{\log \delta^{-1}}{2cm}}, \tag{C.41}$$

where $\bar{k}(\tilde{x}, \tilde{x})$ is bounded via Lemma C.3.

Combining (C.39), (C.40) and (C.41), the multi-class generalization bound after considering the heterogeneity is

D. Experimental Configurations

The hyperparameters settings for the different methods are as follows:

- k-NN: the number of the nearest neighbours $k \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ were validated.
- SVM: the regularization coefficient $C \in \{0.1, 0.5, 1, 2, 5, 10, 20, 50\}$ and the kernel bandwidth $h \in \{0.1d_M, 0.5d_M, 1d_M, 5d_M, 10d_M, 50d_M, 100d_M\}$, where $d_M = \text{median}\left(\|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2^2\right), \forall \boldsymbol{x}_i, \boldsymbol{x}_j \in \mathcal{X}$ were validated.
- DICA: Two parameters (λ, δ) require tuning. $\lambda \in \{10^{-3}, 10^{-2}, 10^{-1}, 1, 10, 10^2, 10^3\}$ and $\delta \in \{10^{-3}, 10^{-2}, 10^{-1}, 1, 10, 10^2, 10^3, 10^4, 10^5, 10^6\}$ were validated.
- SCA: Two parameters (β, δ) require tuning. $\beta \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$ and $\delta \in \{10^{-3}, 10^{-2}, 10^{-1}, 1, 10, 10^2, 10^3, 10^4, 10^5, 10^6\}$ were validated.
- CIDG: Four hyper-parameters $(\beta, \delta, \sigma, \gamma)$ require tuning. $\beta \in \{0.1, 0.3, 0.5, 0.7, 0.9\}, \delta \in \{1, 10, 10^2, 10^3, 10^4, 10^5, 10^6\}, \sigma \in \{10^{-3}, 10^{-2}, 10^{-1}, 1, 10, 10^2, 10^3\}$ and $\gamma \in \{10^{-3}, 10^{-2}, 10^{-1}, 1, 10, 10^2, 10^3\}$ were validated.
- MDA: Three hyper-parameters (β, α, γ) require tuning. $\beta \in \{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9\}$, $\alpha \in \{10^{-3}, 10^{-2}, 10^{-1}, 1, 10, 10^2, 10^3, 10^4, 10^5, 10^6\}$, and $\gamma \in \{1, 10, 10^2, 10^3, 10^4, 10^5, 10^6\}$ were validated.
- DFDG: For 1-NN as classifier, only one hyper-parameter γ requires tuning. $\gamma \in \{0.01, 0.1, 0.5, 1, 2, 3, 5, 10, 20, 50, 100\}$ were validated. For SVM as classifier, two extra hyper-parameters were also considered, the kernel bandwidth h for transfer kernel and regularization coefficient C in SVM. $C \in \{0.1, 0.5, 1, 2, 5, 10, 20, 50\}$ and $h \in \{0.1d_M, 0.5d_M, 1d_M, 5d_M, 10d_M, 50d_M, 100d_M\}$, where $d_M = \text{median} \left(\| \boldsymbol{x}_i - \boldsymbol{x}_j \|_2^2 \right), \forall \boldsymbol{x}_i, \boldsymbol{x}_j \in \mathcal{X}$, were validated.

For kernel-based DG methods (DICA, SCA, CIDG, MDA, DFDG), different number of extracted features q was also validated. For synthetic data, $q \in \{2, 3, 4, 5\}$ were tested. For real data, different number of extracted features q (i.e., the number of leading eigenvectors) that contribute to certain proportions ({0.5, 0.8, 0.9, 0.95, 0.98}) of the sum of all eigenvalues were validated.

Supplementary Materials of "Distribution Free Domain Generalization"

Figure S1. (a). Data X is organized by double indexing, where we first loop the domain index s and then the class index j. We use $X = [x_i^T]$ and $X = [(x_{j,i}^s)^T]$ interchangeably, while the latter one is used to emphasize the class and domain of x_i ; (b). Both K^{pcd} and K^{pdd} has the same row order as what in X, while they differ only in the order of columns.

Figure S2. Extracted features of synthetic data corresponding to the first two eigenvectors of different methods on Case 1. The numbers in brackets show the accuracy of each method on the target domain. The top and bottom rows show the domains and classes of data respectively. Only 50 of the 200 samples were displayed for each class of each domain.

713 714

673

674

715	
716	Table S1. The average rank (Rank) of different methods for all 16 missions on Office+Caltech and VLCS dataset and the results of
710	Nemenyi's Paired Test, which is used to analyze whether the performances of the methods are statistically different, where the p-value
/1/	that smaller than 0.05 is highlighted.
/18	

Ran	Methods		DFDG-Eig SVM	SVM	SCA 1-NN	DFDG-Eig 1-NN	DFDG-Cov 1-NN	DICA 1-NN	MDA 1-NN	CIDG 1-NN	k-NN
2.38	DFDG-Cov	SVM	0.887	9.5e-07	1.0e-05	6.3e-06	9.5e-10	5.6e-10	1.3e-13	1.1e-13	<2e-16
2.94	DFDG-Eig	SVM	-	0.002	0.010	0.007	9.7e-06	6.3e-06	1.1e-09	6.0e-13	<2e-16
4.25	SVM			-	1.000	1.000	0.985	0.976	0.225	0.011	8.8e-14
4.69	SCA	1-NN			-	1.000	0.881	0.846	0.077	0.002	9.1e-14
5.06	DFDG-Eig	1-NN				-	0.916	0.887	0.099	0.003	9.5e-14
6	DFDG-Cov	1-NN					-	1.000	0.897	0.251	1.3e-13
6	DICA	1-NN						-	0.925	0.294	6.6e-14
6.75	MDA	1-NN							-	0.990	1.3e-12
6.94	CIDG	1-NN								-	2.3e-09
10	k-NN	[-

Table S2. Average accuracy and standard deviation on Office+Caltech dataset

Targe	t	А	С	A,C	W,D	W,C	D,C
k-NN	k-NN		$68.6{\pm}0.00$	$48.8{\pm}0.00$	61.2±1.75	$71.5{\pm}0.00$	70.6±0.66
SVM		$92.2{\pm}0.09$	$82.8{\pm}0.42$	$68.7{\pm}0.09$	$80.5{\pm}0.19$	$84.9{\pm}0.42$	$84.4{\pm}0.08$
DICA	1-NN	$91.8 {\pm} 0.77$	$83.2{\pm}2.26$	$61.7 {\pm} 7.10$	$80.2{\pm}0.78$	$84.9 {\pm} 2.32$	$85.4{\pm}2.38$
SCA	1-NN	$92.2{\pm}0.78$	$82.3 {\pm} 1.76$	$65.0{\pm}2.73$	$81.2{\pm}0.00$	85.2 ± 1.12	$83.8 {\pm} 2.17$
MDA	1-NN	$90.3 {\pm} 1.21$	75.1 ± 1.30	$56.7 {\pm} 2.92$	$75.9{\pm}0.40$	$80.9 {\pm} 2.16$	$78.5 {\pm} 1.68$
CIDG	1-NN	$92.5{\pm}0.69$	$82.4 {\pm} 0.44$	$68.6 {\pm} 3.45$	$79.5{\pm}0.90$	$82.0 {\pm} 2.59$	$83.4 {\pm} 0.42$
DFDG-Eig	SVM	$92.3{\pm}0.39$	$83.2 {\pm} 0.49$	$72.3 {\pm} 1.41$	$81.2 {\pm} 1.77$	$83.8{\pm}0.65$	$85.0{\pm}0.83$
DFDG-Eig	1-NN	$91.9{\pm}0.48$	$82.6 {\pm} 0.40$	66.2 ± 1.24	$82.7 {\pm} 0.55$	$82.3{\pm}0.48$	$84.9 {\pm} 0.13$
DFDG-Cov	SVM	$92.5{\pm}0.67$	$83.9{\pm}0.72$	$73.1 {\pm} 0.87$	$81.6{\pm}0.88$	$83.8{\pm}0.88$	$84.9 {\pm} 1.06$
DFDG-Cov	1-NN	$90.5{\pm}0.75$	$82.3 {\pm} 0.44$	$68.2{\pm}0.15$	$81.2 {\pm} 0.40$	$81.5{\pm}0.66$	$84.3 {\pm} 0.79$

Table S3. Average accuracy and standard deviation on VLCS dataset

750	Table S3. Average accuracy and standard deviation on VLCS dataset											
751	VLCS											
752	Target		V	L	С	S	V,L	V,C	V,S	L,C	L,S	C,S
753	k-NN		46.8±0.20	49.5±0.67	72.9±1.25	48.9±0.96	52.5±0.21	50.7±0.54	42.1±0.64	57.5±0.21	49.6±0.32	56.3±1.15
/54	SVM		$64.7{\pm}0.99$	$58.6{\pm}2.02$	$84.9{\pm}3.27$	$63.9{\pm}0.85$	$59.5{\pm}1.40$	$63.3{\pm}0.80$	$53.6{\pm}0.38$	$66.8{\pm}1.20$	$64.9{\pm}1.31$	$70.3{\pm}0.79$
755	DICA	1-NN	$61.7{\pm}0.98$	$56.8{\pm}0.91$	$87.5 {\pm} 1.60$	$58.7{\pm}1.07$	$57.3{\pm}1.32$	$55.1 {\pm} 1.59$	$53.7{\pm}0.83$	$68.8{\pm}0.63$	$60.0{\pm}0.51$	$70.0{\pm}0.25$
756	SCA	1-NN	$65.3{\pm}0.37$	$58.0{\pm}0.97$	$89.4{\pm}2.21$	$60.7{\pm}0.39$	$58.4{\pm}1.31$	$56.8{\pm}1.37$	$54.8{\pm}0.24$	$69.8{\pm}0.48$	$61.1{\pm}0.73$	$70.9{\pm}0.24$
757	MDA	1-NN	$64.4{\pm}0.20$	$57.8{\pm}0.67$	$90.1{\pm}1.25$	$61.0{\pm}0.96$	$57.1{\pm}0.21$	$61.6{\pm}0.54$	$54.4{\pm}0.64$	$70.6{\pm}0.91$	$59.1{\pm}0.32$	$69.3{\pm}1.15$
758	CIDG	1-NN	$59.6{\pm}1.84$	$55.3 {\pm} 1.49$	$88.9{\pm}2.21$	$59.5 {\pm} 1.07$	$56.4 {\pm} 1.42$	$56.7{\pm}1.98$	$52.0{\pm}0.94$	$68.7{\pm}1.08$	$58.3{\pm}1.54$	$70.4 {\pm} 1.48$
750	DFDG-Eig	SVM	$60.8{\pm}1.30$	$58.4 {\pm} 1.10$	$90.2{\pm}1.14$	$66.2{\pm}0.73$	$58.4{\pm}0.32$	$64.2 {\pm} 1.60$	$56.4{\pm}2.14$	$70.8{\pm}0.60$	$63.4{\pm}0.99$	$71.2{\pm}0.52$
139	DFDG-Eig	1-NN	$61.4{\pm}0.74$	$57.2 {\pm} 1.01$	$91.6{\pm}1.70$	$64.5{\pm}0.26$	$57.0{\pm}0.78$	$63.8{\pm}0.57$	$51.2{\pm}1.28$	$68.8{\pm}0.60$	$63.7{\pm}0.45$	$68.9{\pm}0.84$
760	DFDG-Cov	SVM	$64.6{\pm}0.69$	$59.5{\pm}0.90$	$91.4{\pm}1.12$	$65.0{\pm}0.42$	$57.6{\pm}0.61$	$63.4{\pm}0.89$	$56.5{\pm}1.57$	$70.2{\pm}1.02$	$64.5{\pm}0.54$	$72.4{\pm}0.52$
761	DFDG-Cov	1-NN	$62.6{\pm}0.66$	56.0±0.97	$93.0{\pm}0.95$	62.9 ± 1.02	56.1±0.24	$62.0{\pm}0.96$	51.5 ± 1.28	$68.3{\pm}0.79$	$61.6 {\pm} 1.13$	72.0 ± 0.72
762												

References

- Blanchard, G., Lee, G., and Scott, C. Generalizing from several related classification tasks to a new unlabeled sample. In *Advances in Neural Information Processing Systems*, volume 24. Curran Associates, Inc., 2011.
- Chen, S. X. and Qin, Y.-L. A two-sample test for high-dimensional data with applications to gene-set testing. *Ann. Statist.*, 38(2):808–835, 2010. ISSN 0090-5364.
- Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations of Machine Learning. MIT Press, 2018. ISBN 9780262039406.
- Sriperumbudur, B. K., Fukumizu, K., and Lanckriet, G. R. G. Universality, characteristic kernels and rkhs embedding of measures. *Journal of Machine Learning Research*, 12(7):2389–2410, 2011. ISSN 1532-4435. 805vu Times Cited:137 Cited References Count:32.
- Yan, J. and Zhang, X. Kernel two-sample tests in high dimensions: interplay between moment discrepancy and dimensionand-sample orders. *Biometrika*, 2022. ISSN 1464-3510.